
L’Intelligence artificielle et ses 
enjeux sociétaux

Fondation UBS

Prof. Dr. Ashwin ITTOO
ULiège
22 septembre 2023



About Myself – Ashwin Ittoo

Full Professor @ HEC Liege, ULiege

Japan Advanced Inst. Of Science & Tech
Machine Learning and Language Understanding Lab

Associate Editor, Elsevier
Computers in Industry



Industry Projects/External Roles



Agenda

• AI Overview
• Methods, GPT

• Understand how machines learn

• Bias & Privacy

• Use-cases & Implementation 



Artificial Intelligence
How Machines Learn -

An Overview of Principles & Methods 



How Do Machines Learn?

• Learn how to

• Offer personalized recommendations? E.g. Netflix, Amazon

• Translate text & recognize speech? E.g. Google Translate, Alexa

• Generate texts? E.g. GPT-based models, Llama,...



How Do Machines Learn?

•Learning occurs from past data --> training data
•Browsing history, comments posted online
•Huge text collections
• Images



How to Learn?

• Learning methods
• Supervised

• Unsupervised

• Self-supervised

• (Reinforcement)



Supervised

• Prediction
• Credit risk
• Sentiment

• Labelled data required for training ML method
• Customer reviews + associated sentiments (POS, NEG)
• Customer records + net worth scores
• Criminals' records + recidivism risk scores
• Product images + defective regions

• Training
• ML system input: labelled examples, e.g. customer records + risk scores



Credit Risk Dataset Example

https://tinyurl.com/vykew837



Unsupervised Learning
• Descriptive methods (vs. Predictive for Supervised Learning)

• No requirements for labelled data

• Algorithms concerned with analysis of data
• Discover hidden patterns
• Group data items based on patterns similarity

• Suitable for various applications
• Customer segmentation for targeted marketing
• Recommender systems
• Understanding large amounts of data
• Pre-processing prior to supervised learning



Self-supervised Learning

• Part of input data serves as labeled output

• Consider sequence of words

• Context (features) to learn predict next word
• Next word serves as label for context
• Unlabeled data reconsidered as labeled data

• Reminds us of...?

On Wednesday, investors will watch closely for one of the most important data points the Federal Reserve...



Some Methods



Classical Methods

• Decision Trees

• Random Forests

• Support Vector Machines

• ...

• Artificial Neural Networks



Artificial Neural Networks

• Models inspired by structure and function of biological 
neural networks

• Versatile, lends itself to
• Supervised learning (classification, prediction)

• Unsupervised learning (auto encoders)

• Self-supervised

• Reinforcement learning (deep reinforcement learning)

• At the crux of Deep Learning



ANN Training

Independent variables
1 node per variable

Dependent variable
Single output node 
(regression task)

Multiple output nodes for 
classification task (1 per 
class)

Hidden layers where values are transformed & fed forward to next layer
Deeper networks--> more hidden layers --> more complex computing





Deep Learning

• Deep Learning refers to Deep Artificial Neural Networks

• Many layers create deep architectures
• Composition of transformations between layers

• Enables learning of complex functions related to vision & speech
• Image recognition

• Machine translation

• ...



Deep Learning

• •Deep Learning (DL) are Representation Learning methods
• Multiple representation levels obtained

• Composing non-linear modules (interconnected neurons)

• Each layer transform representation at one level into a representation at 
higher, more abstract level



https://www.deeplearningbook.org



Ubiquitous Deep Learning Applications

• Search engines
• Google Search
• Microsoft Bing

• (Machine) Translation
• DeepL
• Google Translate

• Personal Assistant
• Alexa
• Siri



Powerful but Brittle

• Small alterations, noise in data 
• Drastic consequences

Details: Eykholt,K. et al., Robust Physical Attacks on Deep Learning Visual Classification, IEEE/CVF Conf. Comp.Vision Pattern Recog., (2018)

https://ieeexplore.ieee.org/document/8578273


Adversarial Attacks

https://tinyurl.com/3aj63u6p



From Deep Learning to Transformers



Transformers

• Transformers as most LLMs backbone

• Transformer
• Developed by Google in 2017 ("Attention is all you need")
• Based on shallow neural networks

• Ability consider word context & useful for disambiguation
• "the bank is going bankrupt" vs. "the bank is flooding"

• Implements (self-)attention mechanism
• Memorizes long contexts (long sentences)

• Lends itself to parallelization
• Words in a sentence processed together vs. sequentially (token by token)
• Massive gains in run time

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf




Generative Pretrained Transformers (GPT)

• GPT: Type of Transformer model from OpenAI

• Designed for & applied to Language Modelling
• Predict next word given previous words (contexts)



Source: Pascale Fung, Special Topics in Deep NLP



Language Model Example

• Learn how to predict next word
• Prob (next word | current word)

• From huge text corpus

• Prompt model with any word, e.g. "the"
• Model generates most frequent word given "the" (from what it has learnt)

• Suppose next word "nice"



Language Model Example

• Then given "the", "nice", predict the next word
• Conditional prob. P(w|the, nice)

• Next word according to training data



Probabilistic Approach

• Doubtful as to whether they reason

• Stochastic parrots

• More on this later



Generative Pretrained Transformers (GPT)

• GPT-2 gained public attention
• Model with 1.5 billion parameters

• Trained on ~ 8 million webpages

• Input sentence:
• In a shocking finding, scientist discovered a herd of unicorns living in a 

remote, previously unexplored valley, in the Andes Mountains. Even more surprising 
to the researchers was the fact that the unicorns spoke perfect English.

• Asked to predict next words...





GPT
• GPT-2 spurred further research in language models (LLMs)

• Led to GPT-3
• Displayed higher order cognitive abilities

• Basic arithmetic

• Code generation from natural language
• JXS
• REACT

https://twitter.com/sharifshameem/status/1282676454690451457?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1282676454690451457%7Ctwgr%5E6003fe4bbbc0e543e171688407f873103c606e3f%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fcdn.embedly.com%2Fwidgets%2Fmedia.html%3Ftype%3Dtext2Fhtmlkey%3Dd04bfffea46d4aeda930ec88cc64b87cschema%3Dtwitterurl%3Dhttps3A%2F%2Ftwitter.com%2Fsharifshameem%2Fstatus%2F1282676454690451457image%3Dhttps3A%2F%2Fi.embed.ly%2F1%2Fimage3Furl3Dhttps253A252F252Fabs.twimg.com252Ferrors252Flogo46x38.png26key3D4fce0568f2ce49e8b54624ef71a8a5bd
https://twitter.com/sharifshameem/status/1284421499915403264?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1284421499915403264%7Ctwgr%5E8e8aa6f37d4288e428477682d27523e5af9c2f23%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fcdn.embedly.com%2Fwidgets%2Fmedia.html%3Ftype%3Dtext2Fhtmlkey%3Da19fcc184b9711e1b4764040d3dc5c07schema%3Dtwitterurl%3Dhttps3A%2F%2Ftwitter.com%2Fsharifshameem%2Fstatus%2F1284421499915403264image%3Dhttps3A%2F%2Fi.embed.ly%2F1%2Fimage3Furl3Dhttps253A252F252Fabs.twimg.com252Ferrors252Flogo46x38.png26key3Da19fcc184b9711e1b4764040d3dc5c07


ChatGPT

• Focuses on dialogues

• But LLM at its core
• Trained on large text corpora
• Language modelling task

• Safeguards against deviating into malicious behaviour
• Hate speech, bullying, antisemitism,…

• Implemented by another neural network
• Trained on human-labelled data to learn human preferences
• Used to fine-tune original GPT3 model to prefer certain answers over others
• Paradigm known as Reinforcement Learning with Human Feedback



LLMs

• Language models evolution to Large Language Models (LLMs)

• Trained on massive datasets
• Wikipedia (~20GB)

• BookCorpus (~5GB)

• Common Crawl (>20TB)

• Complex & huge number of parameters



Source: https://twosigmaventures.com/blog/article/the-promise-and-perils-of-large-language-
models/



Useful Reading
• Deep Learning, Goodfellow et al. , MIT Press(2016)

• Deep Learning, LeCun et al., Nature (2015)

• Attention is all you need,Vaswani et al., Neurips (2017)

• OpenAI Codex
• Accessed 6th March 2023

• OpenAI Learning from Human Preferences
• Accessed 6th March 2023

• Microsoft KOSMOS-1

https://www.deeplearningbook.org​
https://www.nature.com/articles/nature14539
https://tinyurl.com/2rpfs754
https://openai.com/blog/openai-codex
https://openai.com/research/learning-from-human-preferences​
https://www.zdnet.com/article/now-microsoft-has-a-new-ai-model-kosmos-1/​


Useful Reading

• Kurakin et al., Adversarial Examples in the Physical World, Tech. 
Report, Google Inc. (2016)

• Heaven, Deep Trouble for Deep Learning, Nature (2019)

• Heaven, Why deep-learning AIs are so easy to fool, Nature (2019)

• Ghaffari Laleh et al., Adversarial attacks and adversarial robustness in 
computational pathology, Nature (2022)

https://static.googleusercontent.com/media/research.google.com/fr/pubs/archive/45471.pdf
https://www.nature.com/articles/s41467-022-33266-0%E2%80%8B
https://www.nature.com/articles/d41586-019-03013-5
https://www.nature.com/articles/s41467-022-33266-0
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